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Knowledge Augmentation for Reasoning

A question.

Knowledge Bases
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A
* Relevant
A Now | can reason better!
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Knowledge Sources
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© Structured Knowledge

Task: Multiple-Choice QA

/Q\O/‘ ConceptN ot Question: xxxxx?

[ ]
An open, multilingual knowledge Optlons A) a_1/ B) a_21 C) a_3

> Am | too old?

E(CLS] E1 EN E[SEP] E1 , e EM‘
(om0 ) () [ )] - [
| |
Sentence 1 Sentence 2

Neural Language Models (e.g., BERT [9])
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Features

Knowledge Graph

O LM encoder to encode the text of question + candidate

Multiple-Choice QA

Question: XXxXxx?7
Candidates: A)a 1,B)a 2, C)a 3

O Graph encoder to encode knowledge subgraphs

O Late fusion of Text Embeddings + Graph Embeddings

|

O Interpretable

Question Concept Recognition Question  Answer
An_swer > ws Co:c:pts What do you £fill with ink to write on an A4 paper?
Language vath Finding & Praning A:C Fountzin pen Vv (KagNet); B: printer  (BERT);
Encoder :squid  D: pencil case (GPT); E:_rjgwspapcr
. '.ff)";!#‘lxxﬂ'. g§>=¢§'1§§?994é§f& |
Statement Vector Ty » % <

fountain

Graph 0O < .\“.f ©® ,_,.,__,,. Kéqut

Vector

MLP J B
v A related knowledge subgraph
P]aUSlbl]Ity score extracted from ConceptNet

KagNet: Knowledge-Aware Graph Networks
for Commonsense Reasoning

pen

fountain pen —

1. select concept pairs
of high att. scores

ink —PartOf—> fountain pen
ink —RelatedTo—> container <-IsA— fountain pen

fill <-HasSubEvent— ink <-AtLocation— fountain pen
fill —RelatedTo—> container <-—IsA— fountain pen

write <-UsedFor— pen
write <-UsedFor— pen <-IsA— fountain pen

paper <-RelatedTo— write <-UsedFor— fountain pen
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eeeee 2, Ranking via path-level attn.
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O 1. Node Type
, Specific Transform

GreaselM [13]
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Features Score

Text Encoder
e.g. BERT

S ’ GreaselLM

Layer XM

Cross-modal
Fuser

O Multi-hop graph encoder &d Scalable GreaseLM Layer | -
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QA'GNN [12] ) Uni-modal [ LM Layer ]
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Encoder Interaé:tion Ny
. il No .
context-to-q virtual context node context-to-a Question S \ M choice
8 /’ ‘ Entlt)/ PR o~ Entlt)’
LM ! //’ / t
Encoding //

QA context - O

/ /
/ D @ [INT] Ifitis not used for hair,a  KG Retrieval ,7 Atlocation

\ ~
\
* \
60 *
\
o0

[q; al R ’
S Probability round brush is an example of > AtLogation .
KG Graph (§3.1) GAT m score what? [SEP] art SUpplieS [SEP] roung & a
Retrieval Reasoning o ' . brush supply
k:: - (§3.3) } Useg (Py=a Painting se&o(
Relevance Pooling
Scoring (§3.2) (00 (o0
“ QA-GNN s

O Early fusion of graphs and text encoders

O Text embeddings as virtual nodes in graph encoding
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& Un/Semi-structured Knowledge

KGs can be limited:

Tree
1. Incompleteness o Trees are perennial plants that have long woody trunks.

2. Only for binary relations o Most trees add one new ring for each year of growth.
o Trees grow using photosynthesis, absorbing carbon dioxide

and releasing oxygen. &
-8

7 &
%’4 \5{’
o Wﬂ j WIKIPEDIA A12 GenericskB

» Task: Open-Ended QA

Question: xXxXxxx?
(A target knowledge corpus.)

Software s stemL

From Wikipedia, the frge encyclopedia

Not to be confuged with System software.

A software system is a|system|of intercommunicatinglcomponents|based on|software m l X i ns n m l i l r nin

forming part of ajcomputer systeml(a combination offhardware|land software). It "consists of
a number of separatelprograms”a)nfiguration files] which are used to set up these

programs,|system documentation,|which describes the structure of the system, and|user Who VO ices The dog in *he Tv ShOW Fam i ly Guy ?
documentation| which explains how to use the system".[”

The term "software system" should be distinguished from the terms|"computer program" WhaT can hel p Gl IeviaTe 9 l 0 bal War.m i n9'>

andl"software" The term computer program generally refers to a set of instructions [source, )

orlobject code]that perform a specific task. However, a software system generally refers to

a more encompassing concept with many more components such as specification |test WhC(T W i I I SZPGI"C(TC ir.on f i l ings f r'Om Sand?

(2]

results,|end-user documentation, maintenance records, etc.
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A Trainable Method for Passage Retrieval MIPS-based Inference Pipeline

/ Question q Passage p\ a N

BERT,

l A dense vector.
A Bi- Encoder Architecture. A question. ‘ hq
l Maximum Inner Product Search -

3

OOOOOOOO 00000000

l Dense Vectors from BERTs Index

~_ _

\ / Top-K Results -

T BERT-based [
sim(q, p) = hy Reader - ,
K Inner Product of two dense vectors. / \ > Ranked List of Answer Spans/

Un/Sen.i-structured Knowledge



Q: What was the nickname of Judy Lewis's father ? .
: \*[ Question Encoder ]

Selsieiiiisisiints ettt e ———————— N
. P1: Judy Lewis (born Judith Young; November 6, 1935 l _____ MIPS 4’ Dense Corpus Index |
. — November 25, 2011) was an American actress, writer, 1st dense query | P ,
. producer, and therapist. She was the secret biological vector | I |
i daughter of actor Clark Gable and actress Loretta 4 : :
' ]

L Young. e S Question Encoder }7 P1 |
P2: William Clark Gable (February 1, 1901 — 2 MIPS : _ :
. November 16, 1960) was an American film actor, often ’: :
' referred to as "The King of Hollywood". He had roles 2nd dense query S Nemmmmmem—a- -
" in more than 60 motion pictures in a wide variety of vector g

. genres during a career that lasted 37 years... P2

—————————————————————————————————————————————————————————————
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AiZGenerICSKB ________ JO— o SEEE el
a corpus of common-sense i | = f2 = trees remove carbon dioxide from |
facts, e.g., GenericsKB ya | the atmosphere through photosynthesis . |

’ ‘O’ . | I

f1 = carbon dioxide is the major greenhouse gas

i € F

A fact is a sentence of generic
commonsense knowledge

photosynthesis contributing to global warming .

tree
. O global warming ‘J:/ '

O carbon dioxide O
SErs O O A knowledge corpus
greenhouse gas as a hypergraph.

-

— -

-— —
—

CjGV »

water O
oxygen O RO\ f3 = the atmosphere contains oxygen,

chunk that are mentioned in F carbon dioxide, and water. :'

| F| x d | F| x | F]|

>
Dense Matrix Sparse Matrix Sparse Matrix g
of Fact Embeddings of Concept-to-Fact Links of Fact-to-Fact Links

A concept is a noun or noun-

— —
o ————— — o — - T ———— — — -

% A weighted set of facts
9

A sparse vector.

T

Un/Semi-structured K..iowledge



\ q: What can help alleviate
global warming?

Carbon dioxide is the major greenhouse

/ gas contribuing to global warming .

initial facts
Fact-Following

the next round?

__—_—-—-—_—__-_-_-_§

. Trees remove carbon dioxide from the

I Question -

' Concepts  Concept-to-Fact 1 Initial Facts atmosphere through photosynthesis .
\ /

Un/Semi-structured Knowle.ige
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F; = Fact-Follow(F;_1,qt)

Dense
Retrieval

S

______________________________________________ .Z-T'-m'—'—'_'_'_'"'_""“'-----.-._,_
R Self-Following T
Ft_q Ft
@ Sparse Fact-to-Fact Matrix Sparse-Dense <>
Mixing
Sparse Retrieval as Filtering >
Input: Output:
Previous-Hop |~ O Next-Hop
S 3
< &

hy 4

Weighted Aggregation of | e G
Question Embedding at Hop-t

Fact Embeddings in Fy_4
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A quick comparison

Methods

BM25

DPR [14] / MDR [15]

DrKIT [16]

DrFact [17]

Knowledge Structure

A set of documents

A set of documents

Mention-Entity
Bipartite Graph

Concept-Fact

Hypergraph

Multi-hop Reasoning
Formulation

- / Multiple-Round

Entity-Following

Fact-Following

Index for Dense Retrieval - Passage Embeddings Mention Embedding Fact Embeddings
Sparse Retrieval Method E;ggigiﬁi;%fﬁ: - E(Ijl(:i)t():rc-llz:f':rtligen Fact-to-Fact Matrix
- Ssnemodd | S | At
Intermediate Supervision - - N/A Distant Supervision
Intro | Structured Knowledge | j;‘l Parametric Knowledge | Conclusion 13




Ll Textual Knowledge

~ Structured Knowledge

€ Un/Semi-structured Knowledge

We are super generalizable and easy to

query! But, we often and
make mistakes.

Intro | Structured Knowledge | Un/Semi-structured Knowledge | 7.‘ | Conclusion

incomplete & hard to query
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* We can be very expensive.
* You have no idea about our data/weights.

Commonsense Model w

Intro

175B Parameters
General Model

CRITIC

Finetuned RoBERTa
filters for quality

ATOMIC10X

Commonsense KG

COMETdistiI

1.5B Parameters

| Structured Knowledge

X starts running

X and Y engage in
an argument

X learns to type

T —h——= / fast
6.5M EXClmp|es N "“" - G

= X steals his

grandfather's sword

X takes up new
employment

Un/Semi-structured Knowledge |

ATOMIC10X

xEf fect
so, X

xWant
so, X wants

xNeed
X needed

xEffect
so, X

xIntent
because X wants

gets in shape

to avoid Y

to have taken
typing lessons

is punished by

his grandfather

to be self
sufficient

| Conclusion




Generated Knowledge Prompting (GKP) [20]

{ N\

Knowledge 1 Task NumerSense [22]
[Question Knowledge >Knowledge 2< Knowledge PR J Prompt Generate some numerical facts about objects. Examples:
Generation/ | J\Integration Input: penguins have <mask> wings.
7 Knowledge: Birds have two wings. Penguin is a kind of bird.
Prompt Q Input: a typical human being has <mask> limbs.

Knowledge: Human has two arms and two legs.

( Instruction

T~ Generate by/KnowIedge 1\ Input: {question} ‘

Q1) k(1) sampling ; < Knowledge: . |

Demonstrations: ... _3 » Knowledge 2
(fixed for task) Q(®), K(®

\/

{Input: The word children means <mask> or more kids.
i Knowledge: The word child means one kid. The word :
jchildren is the plural form of the word child. i
{ Prediction: two

\ J

Question

Parametric f.nowledge 16



Task

NumerSense

Prompt

Generate some numerical facts about objects. Examples:

Input: penguins have <mask> wings.
Knowledge: Birds have two wings. Penguin is a kind of bird.

Input: a typical human being has <mask> limbs.
Knowledge: Human has two arms and two legs.

Input: How many legs does an easel have?
Knowledge:

ner Knowl Promptin
KP

* Atripod is a kind of easel.

®* A human is a kind of easel.

*-

' Reward

PPO
L Training

-
et
“

> Rammier <

n How many legs does an easel have?

ny
N
I
¥
4

Knowledge Knowledge

A tripod is a kind of easel. A human is a kind of easel.

-

4 QA Model 4
two | three
two three two three

Parametric Knowi.:dge

17



Conclusion

“ Structured Knowledge
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ASCENT++ [3]
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S onceptNet
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¥ Un/Semi-structured Knowledge

PUbLmed \Y_\ SEMANTIC SCHOLAR

a rXiv | A12 GenericskB il

WiIKIPEDIA

The Free Encyclopedia

DrKIT [16]
Instance-based Knowledge @ Parametric Knowledge
%) Datasets k.4 PromptSource ‘
sets | EdPrompiSource | IS A(D Comer ]
Sﬁgi%l;d Q< 3 FLAN CO“eCtiOn [6] LAMA [7] (8] ChatGPT & GPT-4

A 4
ReCross [18] SKD [19] m A
Skipped. See website GKP 20 —

V) Reference is on the website: https:/yuchenlin.xyz/
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Future Directions

M How can we merge all these different sources of knowledge

into a unified knowledge model?

2) How can we deliver a more faithful and interpretable

reasoning models with low cost?

How do we collect and ground knowledge of

real world and social interactions between humans?




