

Knowledge-Augmented PreTraining for Reasoning

ACL 2023

Tutorial on Complex Reasoning in Natural Language

Michihiro Yasunaga

Stanford University

Recap: Knowledge

Knowledge is available in various forms

Text

• Diverse & contextual knowledge

Knowledge Graph (KG)

• Structured background knowledge

\equiv Statue of Liberty

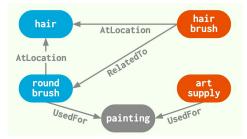
Article Talk

From Wikipedia, the free encyclopedia

WikipediA

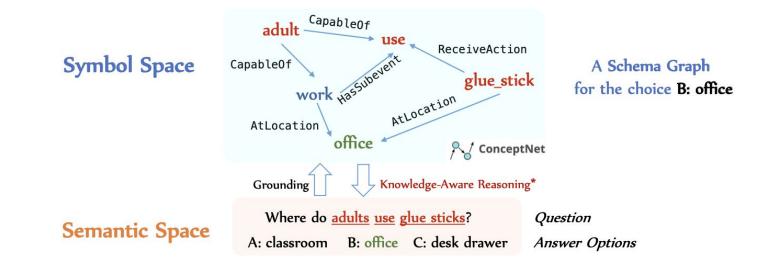
For other uses, see Statue of Liberty (disamb.

The Statue of Liberty (Liberty Enlightening the World; French: La Liberté éclairant le monde) is a colossal neoclassical sculpture on Liberty Island in New York Harbor in New York City, in the United States. The copper statue, a gift from the people of France, was designed by French sculptor Frédéric Auguste Bartholdi and its metal framework was built by Gustave Eiffel. The statue was dedicated on October



Knowledge helps complex reasoning

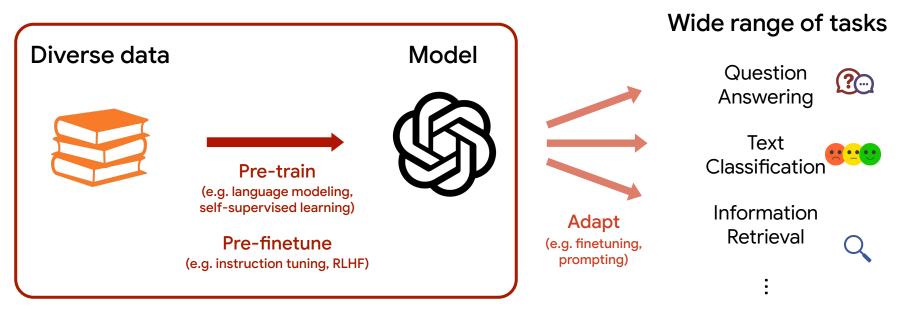
Reasoning often involves combining multiple pieces of knowledge



This section: Knowledge-augmented **Pre-**Training

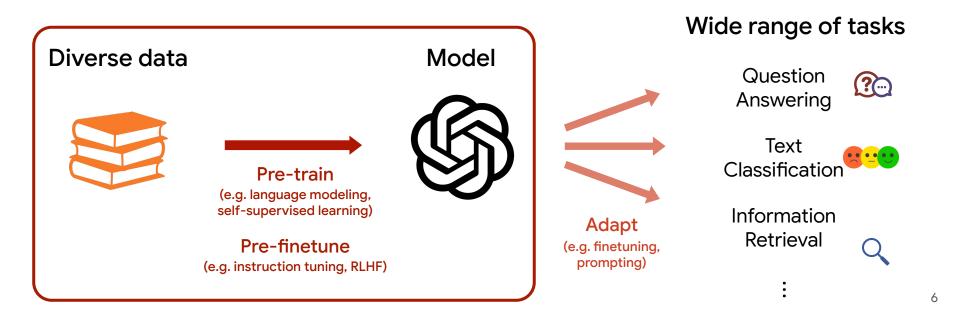
What is Pre-Training (and Pre-Finetuning)

• Key: learn from diverse data (e.g. through self-supervised learning)

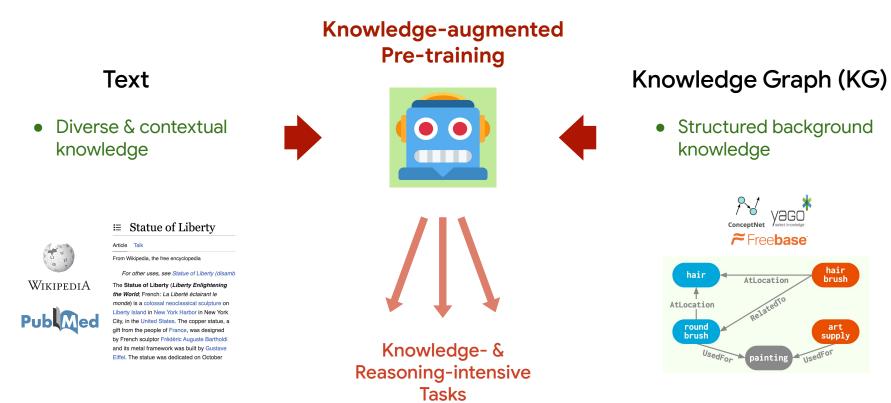


Why Pre-Training (and Pre-Finetuning)?

- Help a broad range of downstream tasks
- Make adaptation efficient (e.g. few-shot finetuning/prompting)



Goal: Knowledge-augmented Pre-Training



Outline of Knowledge-augmented Pre-training

Integrate textual knowledge		REALM [ICML 2020] CDLM [EMNLP 2021] LinkBERT [ACL 2022]
Integrate structured	Knowledge graph as training objective	WKLM [ICLR 2020] KEPLER [TACL 2021] JAKET [AAAI 2022]
knowledge	Knowledge graph as input context	ERNIE [ACL 2019] CoLAKE [COLING 2020] DRAGON [NeurIPS 2022]

Integrate Textual Knowledge

Integrate textual knowledge		REALM [ICML 2020] CDLM [EMNLP 2021] LinkBERT [ACL 2022]
Integrate structured	Knowledge graph as training objective	<u>WKLM</u> [ICLR 2020] <u>KEPLER</u> [TACL 2021] <u>JAKET</u> [AAAI 2022]
knowledge	Knowledge graph as input context	ERNIE [ACL 2019] CoLAKE [COLING 2020] DRAGON [NeurIPS 2022]

Integrate Textual Knowledge

• We will focus on **text retrieval**, which helps to make reasoning process more explicit

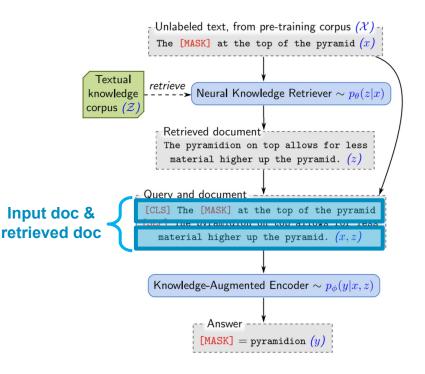
REALM: Retrieval-Augmented Language Model Pre-Training

Method

• When doing masked token prediction, **retrieve** relevant documents from a knowledge corpus as reference

Key

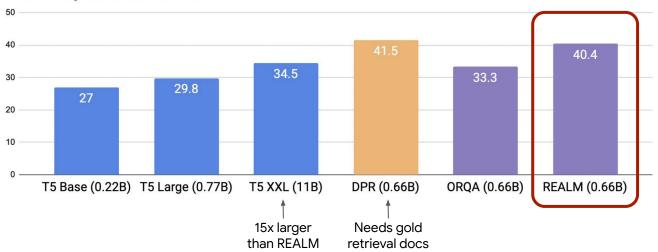
 <u>DPR</u> was retrieval-augmented finetuning for QA. REALM is a self-supervised pre-training version.



REALM: Retrieval-Augmented Language Model Pre-Training

Result

• Improve knowledge-intensive NLP (e.g. open-domain QA)



QA accuracy on NaturalQuestions

Figure from https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1224/slides/cs224n-2022-lecture15-guu.pdf

CDLM: Cross-Document Language Modeling

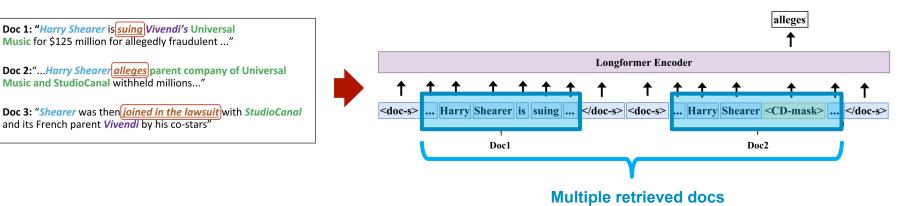
Method

- Retrieve related docs and pre-train LM on concatenated context
- Internalize knowledge during pretraining. Retrieval is optional during inference.

Set of related docs

Music and StudioCanal withheld millions...'

and its French parent Vivendi by his co-stars"



LM pre-training

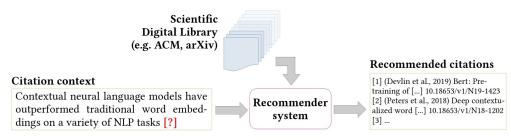
CDLM: Cross-Document Language Modeling

Result

• Improve cross-document NLP (e.g. citation recommendation, coreference resolution)

Takeaway

• Retrieval-augmented pre-training helps cross-document reasoning



(Citation recommendation illustration: https://arxiv.org/pdf/2108.07571.pdf)

Model	AAN	OC	S2orc	PAN
SMASH (2019) ⁵	80.8	-	-	-
SMITH (2020) ⁵	85.4	-	-	-
BERT-HAN (2020)	65.0	86.3	90.8	87.4
GRU-HAN+CDA (2020)	75.1	89.9	91.6	78.2
BERT-HAN+CDA (2020)	82.1	87.8	92.1	86.2
Longformer	85.4	93.4	95.8	80.4
Local CDLM	83.8	92.1	94.5	80.9
Rand CDLM	85.7	93.5	94.6	79.4
Prefix CDLM	87.3	94.8	94.7	81.7
CDLM	88.8	95.3	96.5	82.9

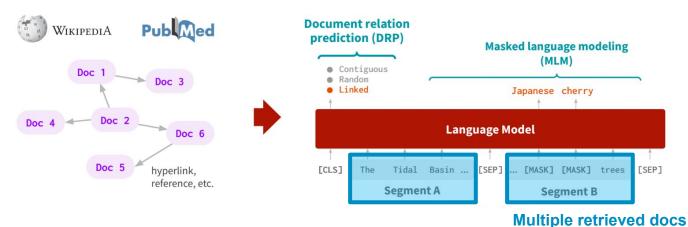
Table 4: F_1 scores over the document matching benchmarks' test sets.

Caciularu, et al. "CDLM: Cross-Document Language Modeling." EMNLP 2021.

LinkBERT: Pretraining Language Models with Document Links

Method

- Retrieve related docs and pre-train LM on concatenated context
- Include various doc relations (e.g. hyperlink, citation, dense retrieval)
- Internalize knowledge during pretraining. Retrieval is optional during inference.



Document relations

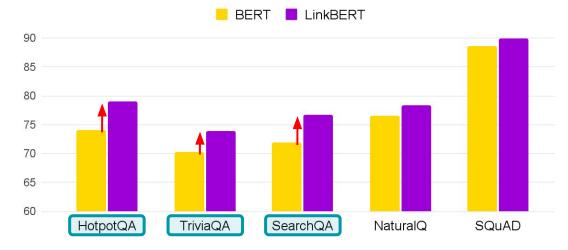
LM pre-training

Yasunaga, et al. "LinkBERT: Pretraining Language Models with Document Links". ACL 2022.

LinkBERT: Pretraining Language Models with Document Links

Result

- Improve knowledge-intensive NLP
- Improve multi-hop & multi-document reasoning



F1-score on MRQA tasks

Yasunaga, et al. "LinkBERT: Pretraining Language Models with Document Links". ACL 2022.

LinkBERT: Pretraining Language Models with Document Links

Takeaway

 Retrieval-augmented pre-training (⇒ multi-document in context) helps learn multi-hop reasoning

HotpotQA example

Question: Roden Brothers were taken over in 1953 by a group headquartered in which Canadian city?

Doc A: **Roden Brothers** was founded June 1, 1891 in Toronto, Ontario, Canada by Thomas and Frank Roden. In the 1910s the firm became known as Roden Bros. Ltd. and were later taken over by **Henry Birks and Sons** in 1953. ...

Doc B: **Birks Group** (formerly Birks & Mayors) is a designer, manufacturer and retailer of jewellery, timepieces, silverware and gifts ... The company is headquartered in **Montreal**, Quebec, ...

LinkBERT predicts: "Montreal" (✓) BERT predicts: "Toronto" (✗)

Summary so far

Integrate textual knowledge		REALM - retrieve relevant docs CDLM - learn relevant docs LinkBERT - learn relevant docs & doc relations
Integrate	Knowledge graph as training objective	WKLM - KG entity objective KEPLER - KG link objective JAKET - both entity and link objectives
structured knowledge	Knowledge graph as input context	<u>ERNIE</u> - contextualize entity emb <u>CoLAKE</u> - contextualize KG triplet <u>DRAGON</u> - contextualize KG subgraph

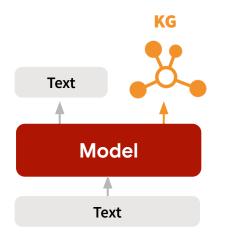
Integrate Structured Knowledge

Integrate textual knowledge		<u>REALM</u> [ICML 2020] <u>CDLM</u> [EMNLP 2021] <u>LinkBERT</u> [ACL 2022]
Integrate structured	Knowledge graph as training objective	<u>WKLM</u> [ICLR 2020] <u>KEPLER</u> [TACL 2021] <u>JAKET</u> [AAAI 2022]
knowledge	Knowledge graph as input context	ERNIE [ACL 2019] CoLAKE [COLING 2020] DRAGON [NeurIPS 2022]

Integrate Knowledge Graph (KG)

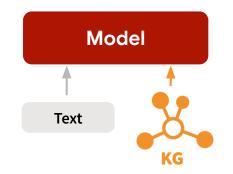
KG as objective (output)

• Convenient - KG not needed at test time



KG as input

• Expressive model

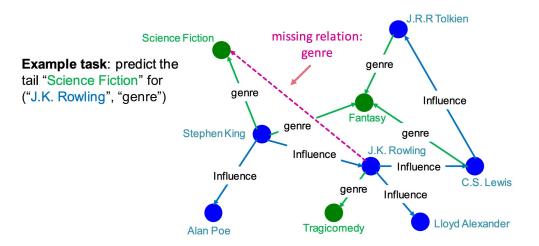


Integrate Knowledge Graph as Training Objective

Integrate textual knowledge		REALM [ICML 2020] CDLM [EMNLP 2021] LinkBERT [ACL 2022]
Integrate structured	Knowledge graph as training objective	WKLM [ICLR 2020] KEPLER [TACL 2021] JAKET [AAAI 2022]
knowledge	Knowledge graph as input context	ERNIE [ACL 2019] CoLAKE [COLING 2020] DRAGON [NeurIPS 2022]

Information in Knowledge Graph

- Entity information (e.g., category, definition)
- Link information (e.g., reasoning about entity relations)



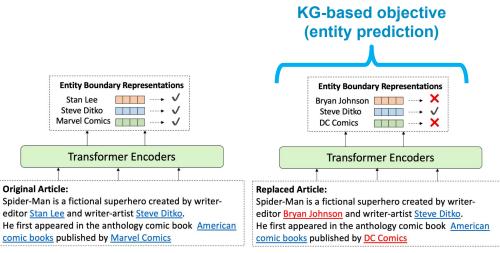
WKLM: Weakly Supervised Knowledge-Pretrained Language Model

ldea

• Add entity prediction objective

Method

- Replace entity mentions in text by false entities in the same category
- Predict true/false entities



Entity Replacement Procedure

WKLM: Weakly Supervised Knowledge-Pretrained Language Model

Result

Improve knowledge-intensive NLP (e.g. QA, entity typing)

Takeaway

• Seminal work in using KG for LM pre-training objective

Model	SQuAD (F1)	TriviaQA (F1)	Quasar-T (F1)	FIGER (acc)
WKLM	91.3	56.7	49.9	60.21
WKLM w/o MLM	87.6	52.5	48.1	58.44
BERT + 1M Updates	91.1	56.3	48.2	54.17
Much w	vorse without ML	VI	ch worse training for sing the entity repla	

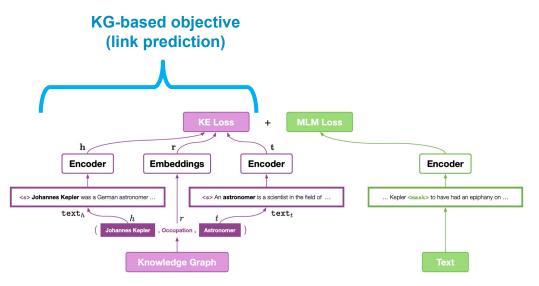
KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation

ldea

• Add KG link prediction objective

Method

- Predict whether (head, relation, tail) forms a link or not
- Use TransE head: $\| \mathbf{h} + \mathbf{r} \mathbf{t} \|$



KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation

Result

• Improve knowledge-intensive NLP and KG link prediction

Takeaway

• Besides entities, KG links (structure) can augment LM pre-training objective

Model	Р	R	F-1
ERNIEBERT	70.0	66.1	68.0
KnowBert _{BERT}	73.5	64.1	68.5
RoBERTa	70.4	71.1	70.7
ERNIE ROBERTA	73.5	68.0	70.7
$KnowBert_{ROBERTa}$	71.9	69.9	70.9
KEPLER-Wiki	71.5	72.5	72.0

Table 5: Precision, recall and F-1 on TACRED (%).

Model	MR	MRR	HITS@1	HITS@3	HITS@10
DKRL (Xie et al., 2016)	78	23.1	5.9	32.0	54.6
RoBERTa	723	7.4	0.7	1.0	19.6
KEPLER-Wiki	32	35.1	15.4	46.9	71.9
KEPLER-Cond	28	40.2	22.2	51.4	73.0

(b) Inductive results on Wikidata5M (% except MR).

ldea

 Add both KG entity and link prediction objectives

Result

• Further improvement on **multi-hop reasoning** (e.g., MetaQA)

MetaQA example (2-hop): "Who acted in the movies directed by Erik Poppe?"

Model	KG-Full		KG-50%	
	1-hop	2-hop	1-hop	2-hop
RoBERTa	90.2	70.8	61.5	39.3
RoB+G+M	91.4	72.6	62.5	40.8
JAKET	93.9	73.2	63.1	41.9

Table 2: Results on the MetaQA dataset over 1-hop and 2-hop questions under *KG-Full* and *KG-50%* settings. RoB+G+M is the abbreviation for the baseline model RoBERTa+GNN+M.

Summary so far

Integrate textual knowledge		<u>REALM</u> - retrieve relevant docs <u>CDLM</u> - learn relevant docs <u>LinkBERT</u> - learn relevant docs & doc relations
Integrate structured	Knowledge graph as training objective	<u>WKLM</u> - KG entity objective <u>KEPLER</u> - KG link objective <u>JAKET</u> - both entity and link objectives
knowledge	Knowledge graph as input context	<u>ERNIE</u> - contextualize entity emb <u>CoLAKE</u> - contextualize KG triplet <u>DRAGON</u> - contextualize KG subgraph

Integrate Knowledge Graph as Input Context

Integrate textual knowledge		REALM [ICML 2020] CDLM [EMNLP 2021] LinkBERT [ACL 2022]
Integrate structured	Knowledge graph as training objective	<u>WKLM</u> [ICLR 2020] <u>KEPLER</u> [TACL 2021] <u>JAKET</u> [AAAI 2022]
knowledge	Knowledge graph as input context	ERNIE [ACL 2019] Colake [COLING 2020] DRAGON [NeurIPS 2022]

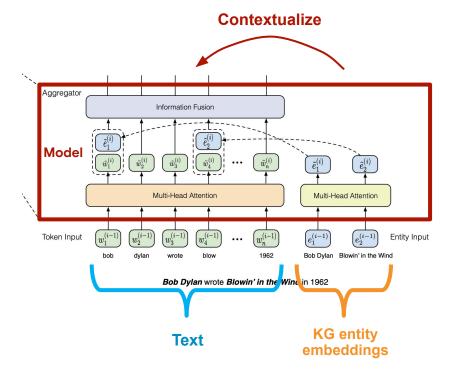
ERNIE: Enhanced Language Representation with Informative Entities

Method

- Add KG entity embeddings in LM context
- Entity embs are concatenated to corresponding word embs

Takeaway

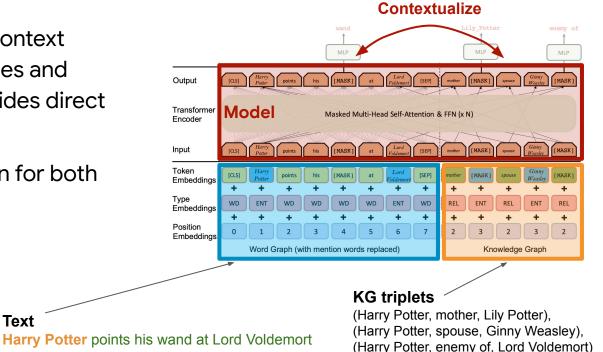
• Seminal work in using KG info as input in LM pre-training



CoLAKE: Contextualized Language and Knowledge Embedding

Method

- Add KG triplets in LM context $(\Rightarrow$ bring neighbor entities and relations in context, besides direct entity mentions in text)
- Masked token prediction for both text and KG sides



Text

Result

• Improve knowledge-intensive NLP and KG link prediction

Takeaway

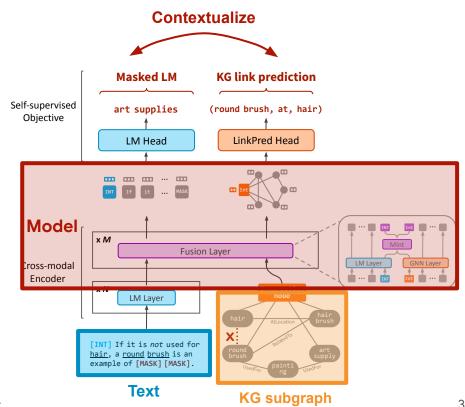
 KG triplets provide background knowledge and help reason about related entities

Model	$\mathrm{MR}\downarrow$	MRR
	Transductive setting	
TransE (Bordes et al., 2013)	15.97	67.30
DistMult (Yang et al., 2015)	27.09	60.56
ComplEx (Trouillon et al., 2016)	26.73	61.09
RotatE (Sun et al., 2019)	30.36	70.90
CoLAKE	2.03	82.48
	Inductive setting	
DKRL (Xie et al., 2016)	168.21	8.18
CoLAKE	31.01	28.10

Table 5: The experimental results on word-knowledge graph completion task.

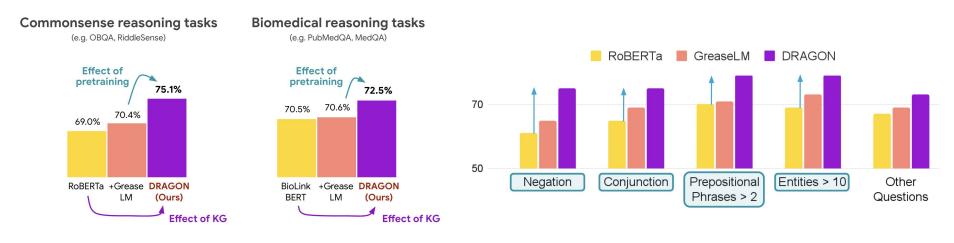
Method

- Add KG subgraph in input context
- Text is contextualized by LM and KG is contextualized by GNN. The two are then contextualized bidirectionally



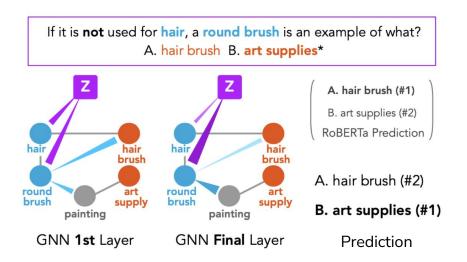
Result

- Improve broad reasoning tasks (QA, commonsense, link prediction)
- Improve complex reasoning (multi-hop, logical)



Takeaway

• KG graph structure provides LM with a scaffold to perform complex reasoning about entities

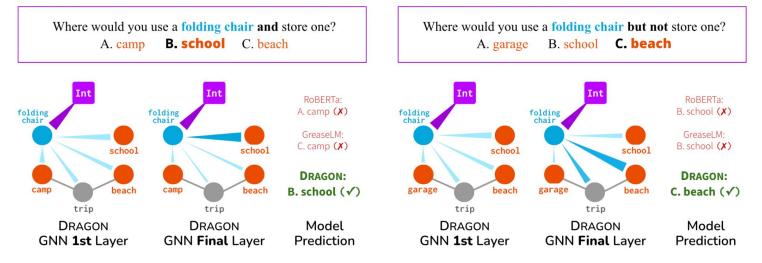


After several layers of fusion, attention weight from text over **hair** decreases, but attention weight over **round brush** and **painting** increases, adjusting for the negation in text

Takeaway

• KG graph structure provides LM with a scaffold to perform complex reasoning about entities

Conjunction



Negation + Conjunction

Yasunaga, et al. "DRAGON: Deep Bidirectional Language-Knowledge Graph Pretraining" NeurIPS 2022

Summary so far

Integrate textual knowledge		<u>REALM</u> - retrieve relevant docs <u>CDLM</u> - learn relevant docs <u>LinkBERT</u> - learn relevant docs & doc relations
Integrate structured knowledge	Knowledge graph as training objective	<u>WKLM</u> - KG entity objective <u>KEPLER</u> - KG link objective <u>JAKET</u> - both entity and link objectives
	Knowledge graph as input context	<u>ERNIE</u> - contextualize entity emb <u>CoLAKE</u> - contextualize KG triplet <u>DRAGON</u> - contextualize KG subgraph

Summary

Integrate textual knowledge		<u>REALM</u> - retrieve relevant docs <u>CDLM</u> - learn relevant docs <u>LinkBERT</u> - learn relevant docs & doc relations
Integrate structured knowledge	Knowledge graph as training objective	<u>WKLM</u> - KG entity objective <u>KEPLER</u> - KG link objective <u>JAKET</u> - both entity and link objectives
	Knowledge graph as input context	<u>ERNIE</u> - contextualize entity emb <u>CoLAKE</u> - contextualize KG triplet <u>DRAGON</u> - contextualize KG subgraph

Conclusion

Takeaways

- Knowledge can be integrated into LM in **self-supervised** ways
- Help a wide range of reasoning tasks

Open questions

- Can we integrate knowledge in **pre-finetuning** (e.g. instruction tuning, RLHF)?
- How can we build a **unified** model with all various knowledge sources?
- How can we ensure the models use and reason about knowledge **faithfully**?

Thak you!

https://cs.stanford.edu/~myasu/

