Complex Few-shot Reasoning with LLMs

Aman Madaan
https://madaan.github.io/

Part 5/7 of the ACL 2023 Tutorial
Complex Reasoning in Natural Language

Questions @ Rocket Chat
Complex Few-shot Reasoning with LLMs

Goal Today:

- Try to cover the details of all possible exciting recent works
- Provide a high-level summary of a class of few-shot prompting techniques

I will definitely miss interesting works:

- Please reach out! We will add it to our website
Complex Few-shot Reasoning with LLMs: Key Techniques

- Reasoning Elaboration
- Instructions
- Tool Augmentation
- Structured Generation
- Feedback
- Memory
Q: Shawn has 5 toys. For Christmas, he got 2 toys each from his mom and dad. How many toys does he have now?

A: The answer is 9 toys.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

A: The answer is 9 toys.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
Few-shot prompting

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: The answer is 5 cars.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

A: Test Example
Complex Few-shot Reasoning with LLMs: Key Techniques

- Reasoning Elaboration
- Instructions
- Tool Augmentation
- Structured Generation
- Feedback
- Memory
Complex Few-shot Reasoning with LLMs: Key Techniques

Techniques overlap in practice – focus on the main contribution.
Rest of the slides

- General idea of the technique
- Representative Work
- Goal/Hope:
 - A *checklist* of techniques for complex reasoning with LLMs
Complex Few-shot Reasoning with LLMs: Key Techniques

- Reasoning Elaboration
- Instructions
- Tool Augmentation
- Structured Generation
- Feedback
- Memory
Few-shot prompting

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: The answer is 5 cars.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

A: Test Example

The answer is 9 toys
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: The answer is 5 cars.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: The answer is 5 cars.

Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.

A: The answer is 5 cars.
Chain-of-thought prompting is extremely effective
Chain-of-thought Prompting (CoT)

● General idea:
 ○ Standard prompt:
 ■ Q → A
 ○ Chain-of-thought prompt:
 ■ Q → Reasoning Process, A

● Many existing prompting techniques can be seen as an improvement over the general CoT strategy

● Similar ideas:
 ○ Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems (Ling et al. 2017)
 ○ Think about it! Improving defeasible reasoning by first modeling the question scenario (Madaan et al. 2021).
 ○ Show your work: Scratchpads for Intermediate Computation with Language Models (Nye et al. 2021)

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.

A: The answer is 5 cars.
Least-to-Most Prompting (Zhou et al. 2022)

- Breakdown the reasoning process into steps
 - Decompose the problem into simpler sub-problems
 - Solve simpler sub-problems
Least-to-Most Prompting

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Q: How many cars are in the parking lot after the first car arrives?
Q: How many cars are in the parking lot after the second car arrives?

Q: How many cars are in the parking lot after the first car arrives?
A: There are originally 3 cars. After the first car arrives, we have 3 + 1 = 4 cars.

Q: How many cars are in the parking lot after the second car arrives?
A: After the first car arrives, we have 3 + 1 = 4 cars. After the second car arrives, we have 4 + 1 = 5 cars.
Least-to-Most Prompting

Least-to-most prompting (solving stage)

Q: “think, machine”
A: The last letter of “think” is “k”. The last letter of “machine” is “e”. Concatenating “k”, “e” leads to “ke”. So, “think, machine” outputs “ke”.

Q: “think, machine, learning”
A: “think, machine” outputs “ke”. The last letter of “learning” is “g”. Concatenating “ke”, “g” leads to “keg”. So, “think, machine, learning” outputs “keg”.

Table 2: A test case of least-to-most prompting for the last-letter-concatenation task. Generated with code-davinci-002 in GPT-3. The prompt context is shown on the right column of Table 1.

<table>
<thead>
<tr>
<th>Method</th>
<th>L = 4</th>
<th>L = 6</th>
<th>L = 8</th>
<th>L = 10</th>
<th>L = 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard prompting</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Chain-of-Thought</td>
<td>89.4</td>
<td>75.0</td>
<td>51.8</td>
<td>39.8</td>
<td>33.6</td>
</tr>
<tr>
<td>Least-to-Most</td>
<td>94.0</td>
<td>88.4</td>
<td>83.0</td>
<td>76.4</td>
<td>74.0</td>
</tr>
</tbody>
</table>

When do you need more steps? Complexity-Based Prompting for Multi-Step Reasoning, Fu et al. 2023

Decomposed Prompting: A Modular Approach for Solving Complex Tasks
Complex Few-shot Reasoning with LLMs: Key Techniques

- Reasoning Elaboration: Spell out the reasoning process before generating the answer
- Instructions
- Tool Augmentation
- Structured Generation
- Feedback
- Memory
Instructions

● Many ways to communicate the same intent:

 ● Write a summary of the history of computer science

 ● Summarize the history of computer science, highlighting key developments.

 ● Provide a summary of the history of computer science in this format:
 ❖ Inventors and innovations
 ❖ Evolution of programming languages
 ❖ Impact of internet

 ● Summarize the history of computer science in no more than 200 words, keeping the language simple and easy to understand

● Different levels of abstract, details, requirements
Reframing Instructional Prompts to GPTk’s Language (Mishra et al., 2022)

<table>
<thead>
<tr>
<th>Raw Task definitions and their reframed counterpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Task: Craft a question which requires commonsense to be answered. Based on the given context, craft a common-sense question, especially those that are LONG, INTERESTING, and COMPLEX. The goal is to write questions that are easy for humans and hard for AI machines! To create such questions, here are some suggestions: A. What may (or may not) be the plausible reason for an event? B. What may (or may not) happen before (or after, or during) an event? C. What may (or may not) be a plausible fact about someone (or something)? D. What may (or may not) happen if an event happens (or did not happen)? You can also create other types of questions.</td>
</tr>
<tr>
<td>Input: Context:<> Expected Output: Question:<></td>
</tr>
</tbody>
</table>

| Reframed Task: Use ‘what may happen’, ‘will ...?’, ‘why might’, ‘what may have caused’, ‘what may be true about’, ‘what is probably true about’, ‘what must’ and similar phrases in your question based on the input context. |
| **Input:** Context:<> **Expected Output:** Question:<> |
Instructions

Raw Task:... What is the type of the answer corresponding to the given question? Number, Date, or Span?...
Input: Passage: <> Question: <> **Expected Output:** <Number/Date/Span> ...

Reframed Task:... What is the type of the answer corresponding to the given question? Number, Date, or Span?...
Input: Passage: <> Question: <> **Answer either Number, Date or Span?** **Expected Output:** <Number/Date/Span>

Figure 2: Across a variety of model sizes, reframed prompts consistently show considerable performance gain over raw task instructions (no reframing) in a few-shot learning setup. Since fine-tuning GPT3 is

- Explicit is better than implicit
- Be aware of instances where you might be expecting the model to read your mind!
Complex Few-shot Reasoning with LLMs: Key Techniques

- Reasoning Elaboration: Spell out the reasoning process before generating the answer
- Instructions: Provide explicit instructions to the LLM, capture all expectations
- Tool Augmentation
- Structured Generation
- Feedback
- Memory
Augmenting LLMs with Tools

- Typical language generation setup: LLMs handle *everything*
 - There are originally 3 cars. 2 more cars arrive. $3 + 2 = 5$.
 - *What has to be done?*
 - Add $3 + 2$
 - *How to do it?*
 - Perform the calculation and produce the answer $= 5$

- Leverage external tools to separate 'what' needs to be done from 'how' to do it.

- Calculator as a tool (T):
 - There are originally 3 cars.
 - 2 more cars arrive.
 - Number of cars after the first car comes $= \text{calculator}(3, 1) = 4$.
 - Number of cars after the second car comes $= \text{calculator}(4, 1) = 5$.
 - The answer is 5.
React (Yao et al. 2022)

(1) Hotspot QA

Question: Aside from the Apple Remote, what other device can control the program Apple Remote was originally designed to interact with?

Answer: iPod

(1a) Standard

Answer: iPod

(1b) CoT (Reason Only)

Thought: Let's think step by step. Apple Remote was originally designed to interact with Apple TV. Apple TV can be controlled by iPhone, iPad, and iPod Touch. So the answer is iPhone, iPad, and iPod Touch.

Answer: iPhone, iPad, iPod Touch

(1c) Act-Only

Act 1: Search[Apple Remote] Obs 1: The Apple Remote is a remote control ...

Act 2: Search[Front Row] Obs 1: The Apple Remote is a remote control ...

Act 3: Search[Front Row (software)] Obs 3: Front Row is a discontinued media center software ...

(1d) ReAct (Reason + Act)

Thought 1: I need to search Apple Remote and find the program it was originally designed to interact with.

Act 1: Search[Apple Remote] Obs 1: The Apple Remote is a remote control introduced in October 2005 by Apple ...

Thought 2: Apple Remote was originally designed to control the Front Row media center program. I need to search Front Row next and find what other device can control it.

Act 2: Search[Front Row] Obs 2: Could not find [Front Row]. Similar: ['Front Row Seat to Earth', 'Front Row Motorsports', 'Front Row (software)', '...']

Thought 3: Front Row is not found. I need to search Front Row (software).

Act 3: Search[Front Row (software)] Obs 3: Front Row is a discontinued media center software ...

Thought 4: Front Row (software) is controlled by an Apple Remote or the keyboard function keys. So the answer is keyboard function keys.

React (Yao et al. 2022)

Figure 3: Scaling results for prompting and finetuning on HotPotQA with ReAct (ours) and baselines.
Augmenting LLMs with Tools

● Obvious use cases
 ○ **Real-time information:** Stock market updates, Temperature monitoring, Traffic reports.
 ○ **Specialization:** Solving Ordinary Differential Equations (ODEs)
 ○ **Multimodal:** Performing clicks, Generating image captions.

● Future Directions
 ○ Combine multiple tools within the same language model framework for increased functionality and adaptability.
 ○ [2304.09842] Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models
 ○ [2304.08354] Tool Learning with Foundation Models
 ○ [2302.04761] Toolformer: Language Models Can Teach Themselves to Use Tools
 ○ [2303.09014] ART: Automatic multi-step reasoning and tool-use for large language models
Complex Few-shot Reasoning with LLMs: Key Techniques

- **Reasoning Elaboration:** Spell out the reasoning process before generating the answer
- **Instructions:** Provide explicit instructions to the LLM, capture all expectations
- **Tool Augmentation:** Enhance LLMs for specialized tasks

Structured Generation

Feedback

Memory
Structured Commonsense Reasoning

- Natural language input (e.g., scenario)
- Structured output (e.g., plan graph, reasoning graph)

Bake a cake

Find recipe

Gather Ingredients

Preheat oven at 375 F

Mix ingredients

Put the cake batter into oven

Take the cake out after 30 min

https://proscript.allenai.org/
Leveraging Language Models for Structured commonsense Reasoning

- Need to generate a graph but … language models can only generate strings
- Workaround
 - Flatten the graph as a string
 - Train a seq2seq model

Goal: Bake a cake

Intermediate Representation

Recovered Graph
Leveraging Language Models for Structured commonsense Reasoning

- Issues with the workaround

"find recipe" → "gather ingredients";
"gather ingredients" → "mix ingredients";
"find recipe" → "preheat oven at 375F";
"preheat oven at 375F" → "put the cake batter into oven";
"mix ingredients" → "put the cake batter into oven";
"put the cake batter into oven" → "take the cake out after 30 min"

Are the two mix ingredients the same?

- We want structures, not strings
class BakeACake:
 def __init__(self) -> None:
 self.find_recipe = Node()
 self.gather_ingredients = Node()
 self.mix_ingredients = Node()
 self.find_recipe = Node()
 self.preheat_oven_at_375f = Node()
 self.put_cake_batter_into_oven = Node()
 self.take_cake_out_after_30_min = Node()

 self.find_recipe.children = [self.gather_ingredients,
 self.preheat_oven_at_375f]
 self.gather_ingredients.children = [self.mix_ingredients]
 self.mix_ingredients.children = [self.put_cake_batter_into_oven]
 self.preheat_oven_at_375f.children =
 [self.put_cake_batter_into_oven]
 self.put_cake_batter_into_oven.children =
 [self.take_cake_out_after_30_min]
class BakeACake:
 def __init__(self) -> None:
 self.find_recipe = Node()
 self.gather_ingredients = Node()
 self.mix_ingredients = Node()
 self.find_recipe = Node()
 self.preheat_oven_at_375f = Node()
 self.put_cake_batter_into_oven = Node()
 self.take_cake_out_after_30_min = Node()

 self.find_recipe.children = [self.gather_ingredients,
 self.preheat_oven_at_375f]
 self.gather_ingredients.children = [self.mix_ingredients]
 self.mix_ingredients.children = [self.put_cake_batter_into_oven]
 self.preheat_oven_at_375f.children = [self.put_cake_batter_into_oven]
 self.put_cake_batter_into_oven.children = [self.take_cake_out_after_30_min]
Script Generation Results on ProScript

- T5-xxl (text, 3500)
- Davinci(text-davinci-002, 15)
- CoCoGen(code-davinci-002, 15)

Comparison of BLEU and Rouge-L scores for different models.
Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

Olivia had 23 dollars. 5 bagels for 3 dollars each will be dollars. So she has dollars left.

Comparison with CoT:

- The language model is responsible for generating a high-level plan that is **executed** to derive the answer
- The results are obtained after running the program
Improves Solve Rate for Multiple Maths Reasoning Tasks

Solve Rate

CoT PaL

100
90
80
70
60
ASDIV GSM SVAMP AddSub MultiArith SingleEq SingleOp
Why should code help?

class BakeACake:
 def __init__(self) -> None:
 self.find_recipe = Node()
 self.gather Ingredients = Node()
 self.mix Ingredients = Node()
 self.find_recipe = Node()
 self.preheat_oven_at_375f = Node()
 self.put_cake_batter_into_oven = Node()
 self.take_cake_out_after_30_min = Node()

 self.find_recipe.children = [self.gather_Ingredients,
 self.preheat_oven_at_375f]
 self.gather_Ingredients.children = [self.mix_Ingredients]
 self.mix_Ingredients.children = [self.put_cake_batter_into_oven]
 self.preheat_oven_at_375f.children =
 [self.put_cake_batter_into_oven]
 self.put_cake_batter_into_oven.children =
 [self.take_cake_out_after_30_min]
Structured Generation

Building a classifier in 2023

Use @OpenAI's new function calling API to define the possible outputs and then use the "input" argument it returns as the classification.

```python
def classify(input_string: str) -> str:
    functions = {
        "name": "print_sentiment",
        "description": "A function that prints the given sentiment",
        "parameters": {
            "type": "object",
            "properties": {
                "sentiment": {
                    "type": "string",
                    "enum": ["positive", "negative", "neutral"],
                    "description": "The sentiment."
                }
            }
        },
        "required": ["sentiment"],
    }
    messages = [{"role": "user", "content": input_string}]
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo-0613",
        messages=messages,
        functions=functions,
        function_call="name": "print_sentiment"
    )
    function_call = response.choices[0].message["function_call"
    argument = json.loads(function_call["arguments"]
    return argument
```

More on future directions

https://twitter.com/_ScottCondron/status/1670827747684364288
Complex Few-shot Reasoning with LLMs: Key Techniques

- Reasoning Elaboration: Spell out the reasoning process before generating the answer
- Instructions: Provide explicit instructions to the LLM, capture all expectations
- Tool Augmentation: Enhance LLMs for specialized tasks
- Structured Generation: Use structure to guide model

Feedback

Memory
Feedback

● Humans typically generate content iteratively:
 ○ Generate → Feedback → Refine

● LLMs, with the right prompt, have recently shown promise at mimicking this process
 ○ Generate an output
 ○ Gather feedback
 ○ Improve output with feedback, repeat
Self-Refine (Madaan et al. 2023)

GPT-3.5/4 is good! But often requires a few rounds of talking through the problem.

USER

Give me an acronym for a paper titled "Politeness transfer: A tag and generate approach"

Make it easy to pronounce. Relevant to the title.

ASSISTANT

PTAGA (Puh-TAG-uh)

USER

That is not a great acronym either by relevance or pronunciation

ASSISTANT

My apologies for that. Here's another acronym: P-TAG (Pee-Tag)

USER

Same problem!

ASSISTANT

Apologies for the confusion. Here's another attempt: TRAPG (Transferring Respect and Politeness: Generate Approach) which can be pronounced as "trap-gee".
Let LLM Self-Refine

Generate Acronym for: Politeness transfer: A tag and generate approach

PTATAGA

Relevance of PTATAGA: The acronym includes the first letters of each major word in the title but doesn't fully capture the meaning of the title. <3/5>

Memorability of PTATAGA: The acronym is not the most memorable. <2/5>

Pronunciation of PTATAGA: The acronym is pronounceable but not very fluid. <3/5>

POLTAG

Relevance of POLTAG: A tag and generate approach: The acronym POLTAG is a good representation of the title as it combines the first few letters of Politeness and Tag. <4/5>

Memorability of POLTAG: The acronym POLTAG is easy to remember as it is short, simple, and has a clear structure. <4/5>

Pronunciation of POLTAG: The acronym is easily pronounced as it follows the common structure of acronyms. <5/5>
Self-Refine Results

Preference Rates for Self-Refined Output

- Larger gains where feedback is obvious + easy
- Lots of room for improvement!
Future Directions: Feedback + Planning

- Monte-Carlo Tree Search + Self-Refine
 - Extend Self-Refine Beyond Linear Search

- Other exciting work:
 - [Language Models can Solve Computer Tasks](Kim et al. 2023)
 - [Tree-of-thought](Yao et al. 2023)
 - [Reflexion](Shinn et al. 2023)
 - [Refiner](Paul et al. 2023)
Complex Few-shot Reasoning with LLMs: Key Techniques

- **Reasoning Elaboration**: Spell out the reasoning process before generating the answer.
- **Instructions**: Provide explicit instructions to the LLM, capture all expectations.
- **Tool Augmentation**: Enhance LLMs for specialized tasks.
- **Structured Generation**: Use structure to guide the model.
- **Feedback**: Refine model outputs during inference.
Models Repeat Mistakes

What is like Bolder?

What is like new?

By like I mean synonym!
Memory

- **Standard few-shot prompting setup**
 - Prompt P: $[X_i, Y_i]$
 - Test examples X_1, X_2
 - $P + X_1 \rightarrow Y'_1$
 - $P + X_2 \rightarrow Y'_2$
 - What if user provides a feedback on $X_1 \rightarrow Y'_1$?
 - Can we improve the output generated for X_2 without re-training?

- **Solution:** maintain a memory of examples seen so far, and any feedback
 - Update the prompt P dynamically
 - Stateful inferences
MemPrompt
MemPrompt: Workflow

● **Step 1**: User asks a question

● **Step 2**: Check if the same question has been asked before, and a clarification is present in memory
 ○ **Step 2.1**: If a clarification is present, add question + clarification to the prompt
 ○ **Step 2.2**: If not, just ask a question

● **Step 3**: Model generates an answer

● **Step 4**: Take clarification on answer if needed, add clarification to memory
MemPrompt: Personalization

Queries in Punjabi
Memory for Few-shot Prompting

- Simpler but effective variants
 - What Makes Good In-Context Examples for GPT-3? (Liu et al. 2021): Store the training set in a database, retrieve most relevant examples on the fly

![Diagram](image)

Figure 2: In-context example selection for GPT-3. White dots: unused training samples; grey dots: randomly sampled training samples; red dots: training samples selected by the k-nearest neighbors algorithm in the embedding space of a sentence encoder.
Complex Few-shot Reasoning with LLMs: Key Techniques

- **Reasoning Elaboration:** Spell out the reasoning process before generating the answer
- **Instructions:** Provide explicit instructions to the LLM, don’t expect mind reading
- **Tool Augmentation:** Blend tools to leverage LLMs for specialized tasks

- **Structured Generation:** Use structure to guide model
- **Feedback:** Refine model outputs during inference
- **Memory:** Maintain a history of interactions with LLM
Future Directions

● LLMs are getting better at following instructions, exciting new possibilities
 ○ Planning, Search – resurgence of classical AI techniques
 ○ Generating actionable feedback from tools

● Appendix: Why does few-shot prompting work?
Complex Few-shot Reasoning with LLMs: Key Techniques
Appendix
But Why Does it Work?

Text and Patterns: For Effective Chain of Thought, It Takes Two to Tango

Aman Madaan* and Amir Yazdanbakhsh*
Carnegie Mellon University *Google Research, Brain Team
amadaan@cs.cmu.edu, ayazdan@google.com
(Equal Contribution)
What makes the chain of thought prompting so effective?

- The thought makes the model think about the problem?
- The thought helps the model learn better
- The thought serves as an additional example of the task
- The thought helps the model remind of the task
- The thought helps extract relevant information for solving the task
What makes chain of thought prompting so effective

Text: Extracting common sense, copy mechanism

Patterns: Task understanding, final answer generation
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

T: There are originally 3 cars. 2 more cars arrive. $3 + 2 = 5$.

A: The answer is 5 cars.

- Counterfactual prompting:
 - Change one knob at a time (symbol, patterns, text)
What if? prompting (counterfactual prompting)

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally 3 cars. 2 more cars arrive. $3 + 2 = 5$.

A: The answer is 5 cars.

What if we don't have actual numbers?

Q: If there are α cars in the parking lot and β more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally α cars. β more cars arrive. $\alpha + \beta = \lambda$.

A: The answer is λ cars.

What if the prompt is misleading?

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally 3 cars. 2 more cars arrive. $3 + 2 = 7$.

A: The answer is 5 cars.
Performance with Counterfactual Prompts

Performance does not change!
The Search Engine Analogy

Query ≅ Prompt

Query Intent ≅ Task Understanding

Database ≅ Weights

Also see: https://ai.stanford.edu/blog/understanding-incontext/