Neuro-Symbolic Approaches: Large Language Models + Tool Use

Tutorial on Complex Reasoning over Natural Language

Tao Yu

https://taoyds.github.io/

University of Hong Kong 07/09/2023

Language models are powerful, but they still suffer from

- Lack of interpretability
- Inconsistency
- Limited scalability
- Restricted capabilities
- ...

About this tutorial

Can LLMs utilize external tools to not only expand their capacities but also to make our NLP systems more robust, scalable, and interpretable?

O: Neuro-symbolic approaches in the era of large language models (LLMs): LLMs + tool use or tool augmented LLMs.

Augmented Language Models: a Survey Tool Learning with Foundation Models LLM Powered Autonomous Agents Paper collection on LLM + tool use https://github.com/xlang-ai/llm-tool-use

Augmented Language Models: a Surv	ey
Grégoire Mialon*	gmialon@meta.com
Roberto Dessi ^{*†}	rdessi@meta.com
Maria Lomeli [*]	marialomeli@meta.com
Christoforos Nalmpantis [*]	christoforos@meta.com
Ram Pasunuru*	rpasunuru@meta.com
Roberta Raileanu*	raileanu@meta.com
Baptiste Rozière [*]	broz@meta.com
Timo Schick*	schick@meta.com
Jane Dwivedi-Yu*	janeyu@meta.com
Asli Celikyilmaz [*]	aslic@meta.com
Edouard Grave*	egrave@meta.com
Yann LeCun*	yann@meta.com
Thomas Scialom [*]	tscialom@meta.com
*Meta AI [†] Universitat Pompeu Fabra	

Tutorial agenda

- Motivations
- Introduction to LLM + tool use
 - LLM + tool use in the perspective of executable language grounding
 - LLM + tool use examples
- Recent methods of LLM + tool use
 - LLM prompting for tool use
 - LLM finetuning/pretraining for tool use
- Other recent related work
 - Tool making
 - Planning
 - Code generation
- Challenges and future work

Human + tool use: motivations

- As humans, we have limited time and memory, feel tired, and have emotions.
- Human + tool use
 - Enhanced scalability
 - Improved consistency
 - Greater interpretability
 - Higher capacity and productivity

LLMs + tool use: motivations

- Just like humans, LLMs suffer from the similar limitations. But in the same way,
- LLMs + tool use
 - Enhanced scalability
 - Improved consistency
 - Greater interpretability
 - Higher capacity and productivity

Tutorial agenda

- Motivations
- Introduction to LLM + tool use
 - LLM + tool use in the perspective of executable language grounding
 - LLM + tool use examples
- Recent methods of LLM + tool use
 - LLM prompting for tool use
 - LLM finetuning/pretraining for tool use
- Other recent related work
 - Tool making
 - Planning
 - Code generation
- Challenges and future work

LLMs + tool use in perspective of executable language grounding

Ground language models into executable actions

- Mapping natural language instructions into code or actions executable within various environments such as databases, web applications, and robotic physical world.
- LM (planning and reasoning) + actions

Data analysis

https://openai.com/blog/chatgpt-plugins https://code-as-policies.github.io/

Web/Apps

Robotic physical world

LLMs + tool use in perspective of executable language grounding

LLMs + tool use in executable language grounding tasks

Inputs

- Language: user question/request
- **Toolkit**: code, APIs to search engines, self-defined functions, expert models...
- **Environment**: databases, IDE, web/apps, visual and robotic physical world...

Outputs

- Grounded reasoning code/action seq that can be executed in the corresponding environment
 - What tools to select, when and how to use the selected tools

Example of LLMs + tool use in executable language grounding

LLMs + tool use in executable language grounding

- Language: user question/statement about a database
- **Toolkit**: code, APIs to NLP functionalities (expert models)
- **Environment**: databases, SQL/Python IDEs

Binder: Binding Language Models in Symbolic Languages

 Zhoujun Cheng*^{1,2}, Tianbao Xie*¹, Peng Shi⁵, Chengzu Li¹, Rahul Nadkarni³, Yushi Hu³, Caiming Xiong⁶, Dragomir Radev⁷, Mari Ostendorf³, Luke Zettlemoyer^{3,8}, Noah A. Smith^{3,4}, Tao Yu^{1,3}
 ¹The University of Hong Kong, ²Shanghai Jiao Tong University, ³University of Washington,
 ⁴Allen Institute for AI, ⁵University of Waterloo, ⁶Salesforce Research, ⁷Yale University, ⁸Meta AI

Project website: <u>https://lm-code-binder.github.io</u>, ICLR 2023

Input			Shirt	Made_in	Sales	Price
Knowledge: Knowledge: • 100% cotton • 220GSM (6.5 oz) • Natural stretch for comfortable fit	 Details 100% cotton 		<u>Polo</u>	U.S.	500	\$29.8
	220GSM (6.5 oz) Natural stretch for comfortable fit "	• 90% cotton,	Luckyland	U.S.	900	\$19.8
		<u>Timber Bay</u>	Mexico	400	\$25.9	
		····· ··· ··· ··· ··· ··· ··· ··· ······	Office	Turkey	600	\$31.8
Question: W	/hich is the best-sellir	ng shirt made in North Am	erica and with	no chemica	ls?	

LLM + no tool

Input			Shirt	Made_in	Sales	Price
Knowledge:	Details • 100% cotton • 220GSM (6.5 oz) • Natural stretch for comfortable fit •	<u>Polo</u>	U.S.	500	\$29.8	
		Luckyland	U.S.	900	\$19.8	
		<u>Timber Bay</u>	Mexico	400	\$25.9	
			Office	Turkey	600	\$31.8
Question: Which is the best-selling shirt made in North America and with no chemicals?						

End-to-End

Binding Language Models in Symbolic Languages

LLM + no tool

Luckyland

Luckyland X

Uninterpretable & not robust

LLM + code

Binding Language Models in Symbolic Languages

✓tool use: SQL/Python

LLM + code and NLP expert function APIs

Binding Language Models in Symbolic Languages

LLM + code: PAL, PoT

Chain-of-Thought (Wei et al., 2022)

Input

Program-aided Language models (this work)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output A: The bakers started with 200 loaves. They sold 93 in the morning and 39 in the afternoon. So they sold 93 + 39 = 132 loaves. The grocery store returned 6 loaves. So they had 200 - 132 - 6 = 62 loaves left. The answer is 62. Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. tennis_balls = 5 2 cans of 3 tennis balls each is

bought_balls = 2 * 3 tennis balls. The answer is

Input

answer = tennis balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output A: The bakers started with 200 loaves loaves baked = 200 They sold 93 in the moming and 39 in the afternoon loaves_sold_morning = 93 loaves_sold_afternoon = 39 The grocery store returned 6 loaves. loaves_returned = 6 The answer is answer = loaves_baked - loaves_sold_morning - loaves_sold_afternoon + loaves_returned >>> print(answer) 74

Question: In Fibonacci sequence, it follows the rule that each number is equal to the sum of the preceding two numbers. Assuming the first two numbers are 0 and 1, what is the 50th number in Fibonacci sequence?

The first number is 0, the second number is 1, therefore, the third number is $0+1=1$. The fourth number is $1+1=2$. The fifth number is $1+2=3$. The sixth number is $2+3=5$. The seventh number is $3+5=8$. The eighth number is $5+8=13$ (Skip 1000 tokens) The 50th number is $32,432,268,459$.	<pre>length_of_fibonacci_sequence = 50 fibonacci_sequence = np.zeros(length_of_) fibonacci_sequence[0] = 0 fibonacci_sequence[1] = 1 For i in range(3, length_of_fibonacci_sequence): fibonacci_sequence[i] = fibonacci_sequence[i-1] + fibonacci_sequence[i-2] ans = fibonacci_sequence[-1]</pre>	РоТ
32,432,268,459	python 12,586,269,025	

LLM + APIs to search/browser for gathering information

Retrieval augmented language models

- Covered in Yuchen and Michi's sessions
- Another ACL tutorial by Akari Asai, Danqi Chen, Sewon Min, Zexuan Zhong

WebGPT: Browser-assisted question-answering with human feedback

ACL 2023 Tutorial: Retrieval-based Language Models and Applications

Sunday July 9 14:00 - 17:30 (EDT) @ Metropolitan West

ChatGPT + browsing

LLM + webs/apps or personalized functions

ChatGPT + Plugins: third-party apps/webs, Function calling

LLM + APIs to expert models

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs

LLM + code, robotic arm, expert models: Code as Policies

Code as Policies: Language Model Programs for Embodied Control Do As I Can, Not As I Say: Grounding Language in Robotic Affordances ProgPrompt: Generating Situated Robot Task Plans using Large Language Models Mind's Eye: Grounded Language Model Reasoning through Simulation

Tutorial agenda

- Motivations
- Introduction to LLM + tool use
 - LLM + tool use in the perspective of executable language grounding
 - LLM + tool use examples
- Recent methods of LLM + tool use
 - LLM prompting for tool use
 - LLM finetuning/pretraining for tool use
- Other recent related work
 - Tool making
 - Planning
 - Code generation
- Challenges and future work

LLM prompting for tool use

LLM prompting for tool use

LLM + tool use for QA and decision making: ReAct

LLM finetuning/pretraining for tool use: TALM

TALM: Tool Augmented Language Models

TALM: Tool Augmented Language Models

Toolformer: Language Models Can Teach Themselves to Use Tools

MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning

LLM finetuning/pretraining for tool use: Toolformer

The New England Journal of Medicine is a registered trademark of [QA("Who is the publisher of The New England Journal of Medicine?") \rightarrow Massachusetts Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) \rightarrow 0.29] 29%) passed the test.

The name derives from "la tortuga", the Spanish word for $[MT("tortuga") \rightarrow turtle]$ turtle.

The Brown Act is California's law [WikiSearch("Brown Act") \rightarrow The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

TALM: Tool Augmented Language Models

Toolformer: Language Models Can Teach Themselves to Use Tools

MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning

LLM finetuning/pretraining for tool use: Toolformer

Tutorial agenda

- Motivations
- Introduction to LLM + tool use
 - LLM + tool use in the perspective of executable language grounding
 - LLM + tool use examples
- Recent methods of LLM + tool use
 - LLM prompting for tool use
 - LLM finetuning/pretraining for tool use

• Other recent related work

- Tool making
- Planning
- Code generation
- Challenges and future work

Other recent related work: LLM as tool maker

LATM: Large Language Models as Tool Makers

Other recent related work: planning via classical resolver

LLM+P: Empowering Large Language Models with Optimal Planning Proficiency PDDL Planning with Pretrained Large Language Models

Other recent related work: code generation

Challenges and future work

- **Complexity**: more complex domain professional/unseen tools?
- Interactivity: go beyond single turn?
- **Evaluation**: multiple possible solutions? Real-time interactive evaluation?
- Efficiency: smaller models?
- **Reliability**: know when to abstain, know its capacity, memorizing and querying tools?
- Others
 - Better tool API design/tool making?
 - Personalization?
 - 0

Thank you!

General tutorial site https://wenting-zhao.github.io/complex-reasoning-tutorial/

Paper collection on LLM + tool use https://github.com/xlang-ai/llm-tool-use

- [1] Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents
- [2] Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
- [3] <u>Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language</u>
- [4] TALM: Tool Augmented Language Models
- [5] Inner Monologue: Embodied Reasoning through Planning with Language Models
- [6] JARVIS: A Neuro-Symbolic Commonsense Reasoning Framework for Conversational Embodied Agents
- [7] ProgPrompt: Generating Situated Robot Task Plans using Large Language Models
- [8] <u>Code as Policies: Language Model Programs for Embodied Control</u>
- [9] Binding Language Models in Symbolic Languages
- [10] <u>Synergizing Reasoning and Acting in Language Models</u>
- [11] <u>Code4Struct: Code Generation for Few-Shot Event Structure Prediction</u>
- [12] Mind's Eye: Grounded Language Model Reasoning through Simulation
- [13] PAL: Program-aided Language Models
- [14] <u>Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks</u>
- [15] Planning with Large Language Models via Corrective Re-prompting

- [16] <u>Augmented Language Models: a Survey</u>
- [17] <u>LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models</u>
- [18] Don't Generate, Discriminate: A Proposal for Grounding Language Models to Real-World Environments
- [19] Large language models are versatile decomposers: Decompose evidence and questions for table-based reasoning
- [20] <u>Toolformer: Language Models Can Teach Themselves to Use Tools</u>
- [21] Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents
- [22] <u>Grounding Large Language Models in Interactive Environments with Online Reinforcement Learning</u>
- [23] Grounded Decoding: Guiding Text Generation with Grounded Models for Robot Control
- [24] PaLM-E: An Embodied Multimodal Language Model
- [25] <u>ViperGPT: Visual Inference via Python Execution for Reasoning</u>
- [26] <u>Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models</u>
- [27] <u>HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace</u>
- [28] <u>TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs</u>
- [29] <u>ART: Automatic multi-step reasoning and tool-use for large language models</u>
- [30] <u>API-Bank: A Benchmark for Tool-Augmented LLMs</u>

- [31] <u>Tool Learning with Foundation Models</u>
- [32] <u>Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models</u>
- [33] <u>GeneGPT: Augmenting Large Language Models with Domain Tools for Improved Access to Biomedical Information</u>
- [34] LLM as A Robotic Brain: Unifying Egocentric Memory and Control
- [35] Voyager: An Open-Ended Embodied Agent with Large Language Models
- [36] <u>GPT4Tools: Teaching Large Language Model to Use Tools via Self-instruction</u>
- [37] PEARL: Prompting Large Language Models to Plan and Execute Actions Over Long Documents
- [38] Large Language Models as Tool Makers
- [39] Gorilla: Large Language Model Connected with Massive APIs
- [40] On the Tool Manipulation Capability of Open-source Large Language Models
- [41] Making Language Models Better Tool Learners with Execution Feedback
- [42] <u>Small models are valuable plug-ins for large language models</u>
- [43] <u>Hierarchical Prompting Assists Large Language Model on Web Navigation</u>
- [44] Multimodal Web Navigation with Instruction-Finetuned Foundation Models
- [45] <u>ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings</u>
- [46] <u>CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing</u>
- [47] <u>SheetCopilot: Bringing Software Productivity to the Next Level through Large Language Models</u>

- [48] SPRING: GPT-4 Out-performs RL Algorithms by Studying Papers and Reasoning
- [49] <u>SQL-PaLM: Improved Large Language ModelAdaptation for Text-to-SQL</u>
- [50] From Pixels to UI Actions: Learning to Follow Instructions via Graphical User Interfaces
- [51] Modular Visual Question Answering via Code Generation
- [52] <u>ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated Cases</u>
- [53] Mind2Web: Towards a Generalist Agent for the Web
- [54] <u>LLM+P: Empowering Large Language Models with Optimal Planning Proficiency</u>
- [55] <u>Search-in-the-Chain: Towards Accurate, Credible and Traceable Large Language Models for Knowledge-intensive</u> <u>Tasks</u>
- [56] OpenAGI: When LLM Meets Domain Experts
- [57] Can LLM Already Serve as A Database Interface? A Blg Bench for Large-Scale Database Grounded Text-to-SQLs
- [58] <u>Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task</u> <u>Planning</u>
- [59] <u>ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models</u>
- [60] <u>ToolCoder: Teach Code Generation Models to use API search tools</u>
- [61] <u>Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models</u>
- [62] Can Language Models Teach Weaker Agents? Teacher Explanations Improve Students via Theory of Mind

Other proof-of-concept projects

- <u>Auto-GPT</u>
- LangChain Agent
- <u>ChatGPT plugins</u>
- <u>BabyAGI</u>
- <u>GPT-Engineer</u>
- <u>ToolBench</u>, <u>BMTools</u>
- ...