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What are rationales?



Definition of rationales

● Rationales are extractive texts that significantly influence what the output 
would be.

● Rationales were first introduced in Zaidan et al. (2007)

What do people do during their time off from work?

(A) take trips

Input

Output

(A) take trips, (B) become hysterical



● Zaidan et al. (2007) supervise models with rationales

● Lei et al. (2016) proposed self-rationalizing models without rationale 
supervision, making producing rationales possible for every dataset

Rationale models may be Supervised / Unsupervised



Rationale models may be Faithful / Unfaithful

● Rationale models are faithful if they predict outputs given only the rationales

● Rationale models need to be faithful to be deemed as an explainable model



Rationale models may extract Tokens / Sentences

● Tokens for short inputs

● Sentences / paragraphs for long inputs

● Complex reasoning tasks often consist of long inputs, i.e., many (and 
potentially very long) documents



Rationale models may be Single-hop / Structured

● Single-hop rationale models predict sentences in a rationale independently

● Structured rationale models explicitly consider sentence structures



Rationale models are closely related to Retrieval

● Documents to be retrieved can be seen as rationales

● Better rationale models can lead to better retrieval models

● More retrieval work is covered in another ACL tutorial: Retrieval-based 
Language Models and Applications (2pm in the afternoon)

[Lewis et al., 2020] 



What are benefits and costs of rationale models?



● Rationale models can improve task performance

Benefits of supervised rationale models

[Yang et al., 2018]



Benefits of supervised rationale models

● Rationale models are robust to adversarial attacks

w/o rationale supervision w/ rationale supervision

[Chen et al., 2022]



Costs of supervising rationales

● Only 29 datasets have annotated rationales [Wiegreffe and Marasović, 2022]

● Rationale annotations are expensive to collect [Geva et al., 2021]

● Rationales can be subjective to annotate [Zhang et al., 2020]



Benefits and costs of structured rationale models

● Necessary to get reasoning correct for problems involve compositional 
structures

● However, there may be training and / or inference overhead



Benefits of faithful rationale models

What do people do during their time off from work?

(A) take trips

Input

Output

[Rajani et al., 2019]

● Faithful rationale models allow users to evaluate the trustworthiness of their 
predictions

(A) take trips, (B) become hysterical



Benefits of faithful rationale models

● Faithful rationale models allow users to debug datasets

[Zhao et al., 2023]



Costs of faithful rationale models

● Potentially more computationally expensive to train

● May not necessarily improve task accuracy



structured

Overview of methods

unsupervised

faithful

unsupervised



● Feed the entire input into transformer models that handle long-form texts and 
directly predict a rationale from contextualized embeddings of [SPC] tokens

● Input: {question} [SPC] sent 1 [SPC] … [SPC] sent n

● Predict on [SPC] tokens for whether a sentence is included

Transformer models that handle long inputs

[Beltagy et al., 2020, Zaheer et al., 2020]

{question} [SPC] sent 1 [SPC] … [SPC] sent n

0 / 1?

Input

Output 0 / 1? 0 / 1?



Handling long inputs with regular transformers

● First, a document selection module filters 
out answer-unrelated documents

● Then, an answer and explain module, 
trained with a multi-task loss, jointly 
predicts an answer and a rationale

[Tu et al., 2019]



● Use graph neural networks to capture the relationship between different hops

● Graphs are often built with entities

Utilizing graph neural networks (GNNs)

[Thayaparan et al., 2019; Fang et al., 2020; Qiu et al., 2019]



Graph vs. No graph

Answer Rationale Joint

[Fang et al., 2020]



structured faithful

Overview of methods

unsupervised



● Treat which part leads to highest prediction confidence as rationale

Prediction confidence

[Glockner et al., 2020; Atanasova, et al., 2023]



Latent rationales

● Models a single document as a latent variable

● Easy to build: This model is on HuggingFace

Input OutputRationale

[Lewis et al., 2020] 

https://huggingface.co/docs/transformers/model_doc/rag


Overview of methods

unsupervised

faithfulstructured



Latent set rationales 

● Explicitly models multi-hop 
reasoning as set-prediction 
problems

[Zhao et al., 2023]



Bridge-based  
reasoning

Modeling documents sets vs. single documents

● HUG: models interdependency between documents and sentences

● HUG-ind: models documents and sentences independently

Comparison-based 
reasoning



Conclusions & directions for rationale-based approaches

● There are options for the specific use scenarios

● Rationale selection doesn’t automatically solved by larger, better language 
models, due to long input lengths

● How to scale up unsupervised rationale selection to open-domain setting?



Graph rationales

[Trivedi et al., 2022]



Conclusions & directions for rationale-based approaches

● There are options for the specific use scenarios

● Rationale selection doesn’t automatically solved by larger, better language 
models, due to long input lengths

● How to scale up unsupervised rationale selection to open-domain setting?

● Is it possible to learn rationale graphs?



Conclusion for the tutorial

● Complex reasoning tasks still remains unsolved even with LLMs

● Making reasoning explicit is a promising direction to build NLP systems that 
generalize and can be trusted by users

● Some of the explicit reasoning systems are easy to implement with 
open-source tools --- start building today!
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